Разработка эталона твердости по Либу второго разряда

Рассмотрены технические принципы метода измерения твердости по шкалам Либа и текущее состояние метрологического обеспечения метода. В связи с разработкой гармонизированного стандарта и необходимостью реализации метрологической цепи согласно структуре обеспечения прослеживаемости, а также определения и распространения шкал твердости рассмотрены и обоснованы методические и технологические решения для реализации стационарного прибора, воспроизводящего метод Либа, для эталона второго разряда. Исходя из проведённого анализа предложена система измерения скорости на основе двух катаушек индуктивности и представлен расчёт её параметров. Приведены результаты испытания макета стационарного прибора, воспроизводящего метод Либа, подтверждающие его соответствие требованиям иностранных стандартов и проекту гармонизированного стандарта.

V. A. Syasko1, K. V. Gogolinsky2, A. A. Nikazov3

Elaboration of Leeb hardness calibration machine

The article deals with the development of Leeb hardness secondary calibration machine. The article describes the technical principles of the Leeb hardness measurement method and the current state of metrological assurance in the Russian Federation. The analysis of Leeb hardness calibration machines of Germany and Switzerland are conducted. The draft of metrological traceability (metrological chain) for disseminating of Leeb hardness scales is proposed.

In connection with the development of harmonized standard and the need for the implementation of the metrological traceability of Leeb hardness method, as well as the identifying and disseminating of hardness scales, methodological and technological solutions for the Leeb hardness secondary calibration machine are considered. Based on the analysis of required metrological characteristics of secondary calibration machine and hardness reference blocks, the construction of velocity measuring system with two inductors and system parameters calculation with required metrological characteristics are suggested. Test results of Leeb hardness secondary calibration machine layout for HLD scale confirmed its compliance with international standards and the draft of harmonized standard. The obtained results can be used to develop the Leeb hardness secondary calibration machine to equip the standardization and metrology centers of the Russian Federation and abroad.

Keywords: hardness, dynamic hardness, Leeb, hardness calibration machine

Применение динамических методов контроля твёрдости, основанных на измерении параметров отскока падающего ударника, получило широкое распространение в последние десятилетия. Преимущества таких методов — малые габариты твердомеров и возможность их использования вне измерительных лабораторий непосредственно на поверхностях деталей, труборолах, объектах энергетики и т. д.

Чаще всего в портативных динамических твердомерах реализуется метод измерения твёрдости по Либу, разработанный в Европе в 1970-х гг. сотрудниками фирмы Proseq. Суть метода заключается в измерении соотношения скоростей V падающего ударника до и после соударения с поверхностью испытуемого образца, при этом твёрдость по Либу HЛ рассчитывается в соответствии с формулой [1] HЛ = 100Vp/Vc, где Vp — скорость отскока ударника; Vc — скорость удара.

На сегодняшний день существует несколько различных шкал твёрдости по Либу для преобразователей, отличающихся радугой R сферах индексаи массой п удара, а также его кинетической энергией Е, при ударе, зависящей от Vc.

Метрологическое обеспечение метода Либа в США и Европе регламентируется стандартами: DIN 50156 (1—3) [2—9], ASTM A956 [5], ISO/DIS 16859 (1—3) [6—8]. До настоящего времени из-за отсутствия стандарта на метод измерения твёрдости по Либу в Российской Федерации динамические твердомеры вносятся в Госреестр средств измерений под видом твердомеров по стандартизированным шкалам статических

1 Saint Petersburg Mining University; CONSTANTIA Ltd, St. Petersburg, Russia; 9334343@gmail.com
2 D.I. Mendeleev All-Russian Institute for Metrology, St. Petersburg, Russia; info@gvniim.ru
3 Saint Petersburg Mining University, St. Petersburg, Russia; nikazov91@gmail.com
Методов. На практике производители твердомеров, обозначаемых как «дина- мические», «портативные», «малогаба- ритные» или «переносные», по сути, реализуют с теми или иными допущениями метод измерения твёрдости по Либу. Ситуация с метрологическим обеспечением динамических методов подробно рассмотрена в [9, 10].

В ООО «КОНСТАНТ» разработан проект гармонизированного стандарта на метод измерения твёрдости по Либу на основе стандартов [6–8]. На проект стандарта получены положительные отзывы, в том числе из ФГУП ВНИИФТРИ. Стандарт определяет требования к твердомерам, предназначенным для измерения твёрдости металлов и сплавов по Либу, ударникам, испытуемым образцам, методикам поверки твердо- меров, требования к производству и по- верке эталонных мер твёрдости, а также требования к эталонам и средствам измерений.

Для реализации метрологической цели согласно структуре обеспечения прослеживаемости, а также для опреде- ления и распространения шкал твёрдости (рис. 1) необходима разработка эталона не только первого, но и второго разряда, для многочисленных центров стандартизации и метрологии (ЦСМ).

После принятия стандарта должно быть произведено достаточно большое увеличение парка твердомеров, реализующих метод Либу, а также мер твердости для их поверки. В связи с этим необходимо будет осуществить большое число ЦСМ эталонов второго разряда, которые должны иметь заданные технические характеристики при мини- мальной цене, определяемой их себестоимостью. Рассмотрим их возможные конструкции.

Проект стандарта определяет комп- лект (станционный прибор, воспроиз- зводящий метод Либу, и комплект средств измерений для позелектно- го контроля его параметров) и пара- метры эталона второго разряда: \(V_a \), \(m \) и \(R \) и материал индентора, прове- ряемые при позелектной поверке (табл. 1), а также диапазоны твёрдо- сти и метрологические характеристи- ки при поверке по эталонным мерам твёрдости 1-го разряда. В ударных преобразователях рабочих сред измерений (твердомерах) ударник разгоняется до необходимой скорости при помощи пружины. В известных эталонных установках ударник разго- няется под воздействием гравитаци- онного поля Земли.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Ед. измерения</th>
<th>Тип ударного преобразователя</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скорость удара (V_a)</td>
<td>м/с</td>
<td>D, D + 15</td>
</tr>
<tr>
<td>Предельно допустимое отклонение скорости удара</td>
<td>м/с</td>
<td>±0,0025</td>
</tr>
<tr>
<td>Масса ударника (m)</td>
<td>г</td>
<td>5,45</td>
</tr>
<tr>
<td>Радиус сферического наконечника (R)</td>
<td>мм</td>
<td>1,500</td>
</tr>
<tr>
<td>Материал индентора</td>
<td>WC-Co*</td>
<td>C**</td>
</tr>
<tr>
<td>Твёрдость индентора по Виккерсу</td>
<td>HV2</td>
<td>1600 ± 50</td>
</tr>
</tbody>
</table>

*Вольфрам-карбид кобальта
**Керамика
***Поликристаллический алмаз

Табл. 2. Диапазоны твёрдости по Либу и метрологические характеристики эталонов второго разряда при поверке по эталонным мерам твёрдости первого разряда

<table>
<thead>
<tr>
<th>Тип ударного преобразователя</th>
<th>Диапазоны твёрдости, HLa</th>
<th>Минимальная повторяемость, %</th>
<th>Предельная погрешность, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>D, D + 15</td>
<td><500</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500–700</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>700</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>DL, S</td>
<td><700</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>700–850</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>850</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>C, E</td>
<td><600</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600–750</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>750</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td><450</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>450–600</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>600</td>
<td>1,0</td>
<td></td>
</tr>
</tbody>
</table>

* HLD для ударных преобразователей типа D; HLD+15 для ударных преобразователей типа D+15; HLLD для ударных преобразователей типа DL; HLS для ударных преобразователей типа S; HLC для ударных преобразователей типа C; HLE для ударных преобразователей типа E; HLG для ударных преобразователей типа G.
Известны две реализации эталонных установок, принципиально отличающихся способом измерения скорости удара: на основе лазерного интерферометра и на основе катушки индуктивности.

Система измерения скорости на основе лазерного интерферометра используется в эталоне, разработанном в Германии (рис. 2). Установка реализует непрерывное измерение скорости движения ударника в процессе падения и отсюда. Для измерения используется лазерный интерферометр на базе He-Ne-лазера фирмы SIOS Messtechnik GmbH, который имеет стабилизированную частоту излучения. В данной конструкции форма ударников отличается от применяемых в виброскоростях, так как они должны обеспечивать отражение луча интерферометра.

Система измерения скорости с катушкой индуктивности реализована в эталоне, разработанном на базе виброскороста Equotip 3 (рис. 3). В системе используется катушка индуктивности и ударник с постоянным магнитом в корпусе, аналогичный рабочим средам измерений швейцарского производителя. Ударник с встроенным магнитом, пролетая сквозь катушку индуктивности со скоростью \(V \) при падении, наводит в ней ЭДС, амплитудой \(E_k \). При отклонении, двигаясь через катушку вверх со скоростью \(V' \), наводит в ней ЭДС амплитудой \(E_k' \) противоположной полярности (рис. 4). В рамках работы над стандартом был разработан макет стационарного прибора, воспроизводящего метод Либа, для эталона второго разряда. Для решения задачи измерения скорости была выбрана система с использованием катушек индуктивности. Согласно стандартам для вычисления моды Либа используется отношение скоростей удара и отсюда, однако в рабочих средствах измерений, в соответствии с теми же стандартами, рассчет моды по Либу выполняется по формуле:

\[
H = \frac{100 E_k}{E_{k'}}
\]

На взгляд авторов система с катушкой индуктивности является предпочтительной ввиду того, что она аналогична технологическому решению, используемому в рабочих средствах измерений. При этом для измерения \(V \) используется установка дополнительной катушки индуктивности.

Система измерения \(V \) (рис. 5) состоит из двух катушек L1 и L2, расположенных друг от друга на расстоянии \(\Delta h \). ЭДС с катушек поступают через измерительные усилители на входы аналогово-цифровых преобразователей микроконтроллера, вычисления значения скорости.

При этом \(h = \frac{t(V_a + V)}{2} \).

Время \(t \) прохождения расстояния \(h \) может быть найдено из решения квадратного уравнения:

\[
h = \frac{t(V_a + V)}{2} = \frac{t(V_a + V - gt)}{2} = \frac{V_a - gt}{2},
\]

откуда

\[
gt^2 - 2V_h t + 2h = 0.
\]

Из решения парабола, \(t \) равно:

\[
t = \frac{-V_a - \sqrt{V_a^2 - 4V_a}}{2} = \frac{0.05 - (0.05^2 - 20.0029.819)^{2/3}}{0.819} = \approx 0.978 \text{ мс.}
\]

Для обеспечения требуемых характеристик необходимо контролировать фактическую скорость и высоту \(h \). Выполнять это можно по фиксации моментов прохождения ударников катушек L1 и L2, соответствующих амплитудам \(E_{k1} \) и \(E_{k2} \) (рис. 4). Фиксация \(t_s \) выполняется по пику ЭДС при прохождении катушки L1, а фиксация \(t_s \) — при прохождении катушки L2 на расстоянии \(\Delta h \) между ними. Параметры определяются из решения системы уравнений:

\[
h = V_{k1} + gt_s^2/2, \quad h = V_{k2} + gt_s^2/2.
\]

Расстояние между измерительными катушками \(\Delta h = V_{k2} - V_{k1} - gt_{s2} - gt_{s2}/2 \).

Скорость в момент удара:

\[
V_a = \frac{\Delta h}{2} - \frac{t_{s2} - t_{s1}}{2}.
\]

С учетом того, что \(\Delta t = t_{s2} - t_{s1} \), имеем:

\[
V_a = \frac{\Delta h}{\Delta t} = -\frac{t_{s2} - t_{s1}}{\Delta t}.
\]

На точность вычисления скорости влияют погрешности измерения \(\Delta h \) и \(\Delta t \). Чувствительность к вариации \(\Delta h \):

\[
S_{\Delta h}(\Delta h) = \frac{dV}{d(\Delta h)} = \frac{1}{\Delta v} \Delta t,
\]

При допустимой погрешности отношения расстояния между катушками от истинного значения \(\Delta h \), погрешность измерения скорости \(V_a \) составляет:

\[
\Delta V_a = S_{\Delta h}(\Delta h)\Delta h = \delta_{\Delta h}/\Delta t.
\]
Допустимое отклонение скорости определено стандартом: $\Delta V_s = \pm 2.5 \text{ мм/с.}$ Тогда предельно допустимая погрешность задания расстояния между катушками: $\Delta L = \Delta V_s t^2.$

Скорость является функцией времени и ускорения удара при последующем ЭДС:

\[V_s(t) = V_0 / \Delta t + a / 2 \Delta t^2 - g / 2 \Delta t^2.
\]

При малых значениях погрешности измерений, при значении δ, погрешность измерения скорости V_s составит:

\[\Delta V_s = \delta V_s / \Delta t^2 = \delta / 2 \Delta t^2 + g \delta.
\]

Так как $\Delta V_s = \pm 2.5 \text{ мм/с, то предельно допустимая погрешность измерения времени } \delta = \Delta V_s / 2 \Delta t^2 + g \delta = V_s \Delta t / (2 \Delta t^2 + g \Delta t^2).

Анализ показывает, что ошибка ЭДС с выходом катушек должна производиться с частотой $f = 1 \text{ МГц.}$ При этом определение моментов t_1 и t_2, соответствующих пику ЭДС, а также момента удара должны производиться после окофикации ЭДС с полосой пропускания 100 КГц. Расстояние $\Delta H = 1 \text{ мм}$. Важно обеспечить погрешность не хуже $\pm 10 \text{ мм}$. По результатам проведенной работы был разработан метод станочного прибора, воспроизводящего метод Либера, для эталона твердости второго разряда по шкале В, параметры которого приведены в табл. 3. Катушки индуктивности L1 и L2 имели следующие размеры: внутренний диаметр 12 мм, внешний диаметр 17 мм, длина намотки 0,5 мм.

Табл. 3. Параметры макета эталона твердости по Либера второго разряда (по шкале В)

<table>
<thead>
<tr>
<th>Параметры</th>
<th>Ед. измерения</th>
<th>Значения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скорость удара, V_s</td>
<td>м/с</td>
<td>2.05 ± 0.0025</td>
</tr>
<tr>
<td>Высота сброса удара</td>
<td>мм</td>
<td>214 ± 0.26</td>
</tr>
<tr>
<td>Масса удара, m</td>
<td>г</td>
<td>5.45 ± 0.03</td>
</tr>
<tr>
<td>Радиус сфераич. индентатора, R</td>
<td>мм</td>
<td>1.5 ± 0.003</td>
</tr>
<tr>
<td>Материал индентатора</td>
<td>WC-Co</td>
<td></td>
</tr>
<tr>
<td>Твердость индентатора по Виккерсу</td>
<td>HV2</td>
<td>1.600 ± 50</td>
</tr>
<tr>
<td>Частота оцифровки ЭДС</td>
<td>МГц</td>
<td>1</td>
</tr>
<tr>
<td>Расстояние между катушками, d</td>
<td>мм</td>
<td>1 ± 0.01</td>
</tr>
<tr>
<td>Расстояние h</td>
<td>мм</td>
<td><2</td>
</tr>
</tbody>
</table>

Предварительные испытания макета эталона были произведены с использованием комплекса мер твердости HLD491,5, HLD608 и HLD770, изготовленных компанией Proceq и поставленных в Physikalisch-Technische Bundesanstalt (PTB). При измерениях на мерах $\Delta V_s = \pm 2.5 \text{ мм/с.}$ Результаты измерений представлены в табл. 4.

Табл. 4. Результаты экспериментов

<table>
<thead>
<tr>
<th>Шкала твердости</th>
<th>HLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Твердость эталонной игры твердости, ед. тв.</td>
<td>491,5 608 770</td>
</tr>
<tr>
<td>Показания прибора, ед. тв.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>484 600 770</td>
</tr>
<tr>
<td>2</td>
<td>487 599 765</td>
</tr>
<tr>
<td>3</td>
<td>489 601 766</td>
</tr>
<tr>
<td>4</td>
<td>488 605 766</td>
</tr>
<tr>
<td>5</td>
<td>490 605 767</td>
</tr>
<tr>
<td>6</td>
<td>483 607 769</td>
</tr>
<tr>
<td>7</td>
<td>484 603 769</td>
</tr>
<tr>
<td>8</td>
<td>485 604 762</td>
</tr>
<tr>
<td>9</td>
<td>486 607 759</td>
</tr>
<tr>
<td>10</td>
<td>487 605 761</td>
</tr>
<tr>
<td></td>
<td>Среднее значение показаний, ед. тв.</td>
</tr>
<tr>
<td></td>
<td>Абс. погрешность, ед. тв.</td>
</tr>
<tr>
<td></td>
<td>Размах показаний, ед. тв.</td>
</tr>
<tr>
<td></td>
<td>СКО</td>
</tr>
<tr>
<td></td>
<td>Повторяемость, %</td>
</tr>
<tr>
<td></td>
<td>Предельная погрешность, %</td>
</tr>
</tbody>
</table>

Выполненные эксперименты с использованием разработанного макета стационарного прибора, воспроизводящего метод Либера, показали, что предложенные технические решения могут быть положены в основу при разработке эталона твердости по Либера второго разряда для центров стандартизации и метрологии.

Литература